Benefits of CSMT

- CRITICAL MASS PROGRAM
 - STAFF
 - FACILITIES
 - EQUIPMENT
- COMMON TECHNOLOGY DEVELOPMENT
- MINIMUM COST TO THE GOVERNMENT
- MAXIMUM LEVERAGE FOR U.S. INDUSTRY

Board of Governors

- PROVIDES POLICY GUIDANCE AND PROGRAM OVERSIGHT
 - DR. EDWARD STONE, DIRECTOR, JPL, CHAIRMAN
 - DR. THOMAS EVERHART, PRESIDENT, CALTECH
 - DR. DWIGHT DUSTON, ASSISTANT DEPUTY FOR TECHNOLOGY, BALLISTIC MISSILE DEFENSE ORGANIZATION
 - DR. MARY GOOD, UNDERSECRETARY FOR TECHNOLOGY, DEPARTMENT OF COMMERCE
 - DR. WESLEY HUNTRESS, ASSOCIATE ADMINISTRATOR, NASA/OFFICE OF SPACE SCIENCE
 - DR. STEVEN KOONIN, VICE PRESIDENT AND PROVOST, CALTECH
 - MR. LARRY LYNN, DIRECTOR, DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
 - DR. JOHN LYONS, DIRECTOR, U.S. ARMY RESEARCH LABORATORY
 - MR. SAMUEL VENNERI, NASA CHIEF TECHNOLOGIST

Microsensors/Microinstruments

Micro-Gyro

Detectors

Twenty Five 256 x 256 QWIP Focal PlaneArrays (FPAs) on 3 inch GaAs Wafer

High Performance Computing and Networking

Three-dimensional visualization of Viking image of Mars (five times exaggeration)

Microdevices Laboratory (MDL)

Microinstruments and MEMS devices

- Surface/Bulk micromachining
- Invention of tunnel transducer technology
- Microinstruments including
 - μ-σεισμομετερ
 - ∞ μιχρογψροσχοπε
 - ∞ μ -weather station
 - ∞ μ-αχχελερομετερ

The Microdevices Laboratory (MDL) is a state of the art facility focused on creating the building blocks enabling NASA's vision of smaller, faster, cheaper spacecraft

MDL Facilities include: Class 10 cleanroom; E-beam and optical lithography; MBE, MOCVD, LPCVD growth systems; RIE systems; and full processing and characterization capabilities

For more information: http://mishkin.jpl.nasa.gov

Superconducting Devices

- Mixer arrays for sub-mm astronomy and atmospheric chemistry - SIS and hot electron bolometer mixers
- FIR bolometers
- Lo-Tc and hi-Tc materials

Neural Network Processors

- Autonomous control
- High speed processing
- Pattern recognition

IR Focal Plane Array UV & X-Ray CCD

- (QWIP) Quantum well IR photodetector arrays based on GaAs/AlGaAs MBE structures
- Enhanced UV / X-ray
 CCDs via MBE δ-δοπινγ
- ∞ ΓαΝ γροωτη & δεσιχεσ

Semiconductor Lasers

- Narrow linewidth, 300K tunable diode lasers
- InGaAsP lasers to 2.0 μμ φορ σπεχτροσχοπψ
- ∞ Λασερ αρραψο φορ ηιγη ρατε χομμ (10∏ο Γβ/σεχ)

PALMCORDER SIZE QWIP CAMERA

Low Cost Camera for Scientific, Defense, and Commercial Applications

Detector Technology = QWIP

Focal Plane Array Size = 256 x 256

Spectral Bandpass = $8 - 9 \mu m$

Optics = f1.3 Ge

Output = Standard

Video-analog

Power Requirements = 5.5 Watts

Battery Life = More than 2 hours

from standard

camcorder battery

Weight = 2.5 pounds

Dimensions = 5.3 in. x 9.7 in. x 2.5 in.

(with 50 mm lens)

 $Ne\Delta t = 30 - 50 \text{ mK}$

JPL

Micromachined Vibratory Microgyroscope

SEM picture of the Si micromechanical gyroscope.

JPL

Near-Earth-Object Rendezvous Second-Generation Microspacecraft full-scale model

CSMT ACTIVITIES

- INNOVATION
- APPLIED RESEARCH
- TECHNOLOGY DEVELOPMENT
- RAPID PROTOTYPING
- TECHNOLOGY DEMONSTRATION AND VALIDATION
- TECHNOLOGY INSERTION INTO MISSIONS
- TECHNOLOGY TRANSFER AND COMMERCIALIZATION

Center for Space Microelectronics Technology (Cumulative Since 1987)

COLLABORATIONS:

UNIVERSITY 74
CALTECH FACULTY / STAFF 54
INDUSTRY 90

CONFERENCES AND WORKSHOPS HOSTED / SPONSORED: 75

DISTINGUISHED VISITING SCIENTISTS: 46